Classification of Cell Images Using MPEG-7-influenced Descriptors and Support Vector Machines in Cell Morphology
نویسنده
چکیده
Counting and classifying blood cells is an important diagnostic tool in medicine. Support Vector Machines are increasingly popular and efficient and could replace artificial neural network systems. Here a method to classify blood cells is proposed using SVM. A set of statistics on images are implemented in C++. The MPEG-7 descriptors Scalable Color Descriptor, Color Structure Descriptor, Color Layout Descriptor and Homogeneous Texture Descriptor are extended in size and combined with textural features corresponding to textural properties perceived visually by humans. From a set of images of human blood cells these statistics are collected. A SVM is implemented and trained to classify the cell images. The cell images come from a CellaVision DM-96 machine which classify cells from images from microscopy. The output images and classification of the CellaVision machine is taken as ground truth, a truth that is 90-95% correct. The problem is divided in two — the primary and the simplified. The primary problem is to classify the same classes as the CellaVision machine. The simplified problem is to differ between the five most common types of white blood cells. An encouraging result is achieved in both cases — error rates of 10.8% and 3.1% — considering that the SVM is misled by the errors in ground truth. Conclusion is that further investigation of performance is worthwhile. Klassificering av cellbilder med hjälp av MPEG-7-inspirerade m̊att och support vector machines i cellmorfologi Sammanfattning—Att räkna och klassificera blodceller är ett viktigt diagnostiskt redskap inom läkarvetenskapen. Support Vector Machines är effektiva, ökar i popularitet och kan ersätta artificiella neurala nätverkssystem. Här föresl̊as en metod för att klassificera blodceller m.h.a. SVM. En mängd statistika p̊a bilder implementeras i C++. De s.k. MPEG-7 descriptors Scalable Color Descriptor, Color Structure Descriptor, Color Layout Descriptor och Homogeneous Texture Descriptor utvidgas i storlek och kombineras med textur-mått motsvarande textur-egenskaper som uppfattas visuellt av människor. Fr̊an en mängd bilder av mänskliga blodceller samlas dessa mått. En SVM implementeras och tränas att klassificera cellbilderna. Cellbilderna kommer fr̊an en CellaVision DM-96 som klassificerar celler fr̊an mikroskoperade bilder. Bilderna och dess klasser fr̊an en CellaVision DM-96-maskin tas som facit, ett facit som är 90-95% korrekt. Problemet delas i tv̊a — det primära och det förenklade. Det primära problemet är att skilja mellan de klasser som CellaVisions maskin gör. Det förenklade problemet är att skilja mellan de fem vanligaste typerna av vita blodkroppar. Ett glädjande resultat uppn̊as i b̊ada fallen — felfrekvenser om 10,8% och 3,1% — med tanke p̊a att SVM missleddes av felen i det tagna facitet. Slutsatsen är att vidare studier ang̊aende prestanda är lönsamma. to Britta, to my family
منابع مشابه
Automatic Image Annotation for Semantic Image Retrieval
This paper addresses the challenge of automatic annotation of images for semantic image retrieval. In this research, we aim to identify visual features that are suitable for semantic annotation tasks. We propose an image classification system that combines MPEG-7 visual descriptors and support vector machines. The system is applied to annotate cityscape and landscape images. For this task, our ...
متن کاملFuzzy Support Vector Machines for Image Classification Fusing Mpeg-7 Visual Descriptors
This paper proposes a new type of a support vector machine which uses a kernel constituted from fuzzy basis functions. The proposed network combines the characteristics both of a support vector machine and a fuzzy system: high generalization performance, even when the dimension of the input space is very high, structured and numerical representation of knowledge and ability to extract linguisti...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملFruits Classification Using MPEG-7 Descriptors from Image Patches
In a supermarket checkout, employees deal with a great number of different fruits and vegetables. Sometimes, the correct pricing of those items is a difficult task, due to the short available time or even inexperience. In this paper we present a complete method for the automatic classification of fruits, extendable for vegetables. We use patches extracted from the images and represented by mean...
متن کاملRemote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery
Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0812.2309 شماره
صفحات -
تاریخ انتشار 2008